- Algebra
- Arithmetic
- Whole Numbers
- Numbers
- Types of Numbers
- Odd and Even Numbers
- Prime & Composite Numbers
- Sieve of Eratosthenes
- Number Properties
- Commutative Property
- Associative Property
- Identity Property
- Distributive Property
- Order of Operations
- Rounding Numbers
- Absolute Value
- Number Sequences
- Factors & Multiples
- Prime Factorization
- Greatest Common Factor
- Least Common Multiple
- Squares & Perfect Squares
- Square Roots
- Squares & Square Roots
- Simplifying Square Roots
- Simplifying Radicals
- Radicals that have Fractions
- Multiplying Radicals

- Integers
- Fractions
- Introducing Fractions
- Converting Fractions
- Comparing Fractions
- Ordering Fractions
- Equivalent Fractions
- Reducing Fractions
- Adding Fractions
- Subtracting Fractions
- Multiplying Fractions
- Reciprocals
- Dividing Fractions
- Adding Mixed Numbers
- Subtracting Mixed Numbers
- Multiplying Mixed Numbers
- Dividing Mixed Numbers
- Complex Fractions
- Fractions to Decimals

- Decimals
- Exponents
- Percent
- Scientific Notation
- Proportions
- Equality
- Properties of equality
- Addition property of equality
- Transitive property of equality
- Subtraction property of equality
- Multiplication property of equality
- Division property of equality
- Symmetric property of equality
- Reflexive property of equality
- Substitution property of equality
- Distributive property of equality

- Commercial Math

- Calculus
- Differential Calculus
- Limits calculus
- Mean value theorem
- L’Hôpital’s rule
- Newton’s method
- Derivative calculus
- Power rule
- Sum rule
- Difference rule
- Product rule
- Quotient rule
- Chain rule
- Derivative rules
- Trigonometric derivatives
- Inverse trig derivatives
- Trigonometric substitution
- Derivative of arctan
- Derivative of secx
- Derivative of csc
- Derivative of cotx
- Exponential derivative
- Derivative of ln
- Implicit differentiation
- Critical numbers
- Derivative test
- Concavity calculus
- Related rates
- Curve sketching
- Asymptote
- Hyperbolic functions
- Absolute maximum
- Absolute minimum

- Integral Calculus
- Fundamental theorem of calculus
- Approximating integrals
- Riemann sum
- Integral properties
- Antiderivative
- Integral calculus
- Improper integrals
- Integration by parts
- Partial fractions
- Area under the curve
- Area between two curves
- Center of mass
- Work calculus
- Integrating exponential functions
- Integration of hyperbolic functions
- Integrals of inverse trig functions
- Disk method
- Washer method
- Shell method

- Sequences, Series & Tests
- Parametric Curves & Polar Coordinates
- Multivariable Calculus
- 3d coordinate system
- Vector calculus
- Vectors equation of a line
- Equation of a plane
- Intersection of line and plane
- Quadric surfaces
- Spherical coordinates
- Cylindrical coordinates
- Vector function
- Derivatives of vectors
- Length of a vector
- Partial derivatives
- Tangent plane
- Directional derivative
- Lagrange multipliers
- Double integrals
- Iterated integral
- Double integrals in polar coordinates
- Triple integral
- Change of variables in multiple integrals
- Vector fields
- Line integral
- Fundamental theorem for line integrals
- Green’s theorem
- Curl vector field
- Surface integral
- Divergence of a vector field
- Differential equations
- Exact equations
- Integrating factor
- First order linear differential equation
- Second order homogeneous differential equation
- Non homogeneous differential equation
- Homogeneous differential equation
- Characteristic equations
- Laplace transform
- Inverse laplace transform
- Dirac delta function

- Differential Calculus
- Matrices
- Pre-Calculus
- Lines & Planes
- Functions
- Domain of a function
- Transformation Of Graph
- Polynomials
- Graphs of rational functions
- Limits of a function
- Complex Numbers
- Exponential Function
- Logarithmic Function
- Sequences
- Conic Sections
- Series
- Mathematical induction
- Probability
- Advanced Trigonometry
- Vectors
- Polar coordinates

- Probability
- Geometry
- Angles
- Triangles
- Types of Triangles
- Special Right Triangles
- 3 4 5 Triangle
- 45 45 90 Triangle
- 30 60 90 Triangle
- Area of Triangle
- Pythagorean Theorem
- Pythagorean Triples
- Congruent Triangles
- Hypotenuse Leg (HL)
- Similar Triangles
- Triangle Inequality
- Triangle Sum Theorem
- Exterior Angle Theorem
- Angles of a Triangle
- Law of Sines or Sine Rule
- Law of Cosines or Cosine Rule

- Polygons
- Circles
- Circle Theorems
- Solid Geometry
- Volume of Cubes
- Volume of Rectangular Prisms
- Volume of Prisms
- Volume of Cylinders
- Volume of Spheres
- Volume of Cones
- Volume of Pyramids
- Volume of Solids
- Surface Area of a Cube
- Surface Area of a Cuboid
- Surface Area of a Prism
- Surface Area of a Cylinder
- Surface Area of a Cone
- Surface Area of a Sphere
- Surface Area of a Pyramid
- Geometric Nets
- Surface Area of Solids

- Coordinate Geometry and Graphs
- Coordinate Geometry
- Coordinate Plane
- Slope of a Line
- Equation of a Line
- Forms of Linear Equations
- Slopes of Parallel and Perpendicular Lines
- Graphing Linear Equations
- Midpoint Formula
- Distance Formula
- Graphing Inequalities
- Linear Programming
- Graphing Quadratic Functions
- Graphing Cubic Functions
- Graphing Exponential Functions
- Graphing Reciprocal Functions

- Geometric Constructions
- Geometric Construction
- Construct a Line Segment
- Construct Perpendicular Bisector
- Construct a Perpendicular Line
- Construct Parallel Lines
- Construct a 60° Angle
- Construct an Angle Bisector
- Construct a 30° Angle
- Construct a 45° Angle
- Construct a Triangle
- Construct a Parallelogram
- Construct a Square
- Construct a Rectangle
- Locus of a Moving Point

- Geometric Transformations

- Sets & Set Theory
- Statistics
- Collecting and Summarizing Data
- Common Ways to Describe Data
- Different Ways to Represent Data
- Frequency Tables
- Cumulative Frequency
- Advance Statistics
- Sample mean
- Population mean
- Sample variance
- Standard deviation
- Random variable
- Probability density function
- Binomial distribution
- Expected value
- Poisson distribution
- Normal distribution
- Bernoulli distribution
- Z-score
- Bayes theorem
- Normal probability plot
- Chi square
- Anova test
- Central limit theorem
- Sampling distribution
- Logistic equation
- Chebyshev’s theorem

- Difference
- Correlation Coefficient
- Tautology
- Relative Frequency
- Frequency Distribution
- Dot Plot
- Сonditional Statement
- Converse Statement
- Law of Syllogism
- Counterexample
- Least Squares
- Law of Detachment
- Scatter Plot
- Linear Graph
- Arithmetic Mean
- Measures of Central Tendency
- Discrete Data
- Weighted Average
- Summary Statistics
- Interquartile Range
- Categorical Data

- Trigonometry
- Vectors
- Multiplication Charts
- Time Table
- 2 times table
- 3 times table
- 4 times table
- 5 times table
- 6 times table
- 7 times table
- 8 times table
- 9 times table
- 10 times table
- 11 times table
- 12 times table
- 13 times table
- 14 times table
- 15 times table
- 16 times table
- 17 times table
- 18 times table
- 19 times table
- 20 times table
- 21 times table
- 22 times table
- 23 times table
- 24 times table

- Time Table

# The** Population **Mean – Explanation & Examples

*The definition of the population mean is:*

*“The population mean is the mean or average found in a population.”*

*In this topic, we will discuss the population mean from the following aspects:*

- What is the population mean?
- How to find the population mean?
- The population mean formula.
- The role of the population mean.
- Practice questions.
- Answer key.

## What is the population mean?

**The population mean** is the mean value of a numerical characteristic of the population. The population is the whole group of items we want to study. These items can be individuals, things, animals, plants, etc.

For example, the whole individuals living in the U.S., the whole chairs produced from a certain factory, the whole tigers living in rain forests in Indonesia, and the whole orange trees in Egypt.

These different populations’ numerical characteristics can be weights for individuals, leg lengths for chairs, tail lengths for tigers, and the heights for orange trees.

However, collecting information from the population may not be possible in many cases due to the great resources it needs.

For example, if we want to study the heights of American males. We can survey every American male and get his height. This is population data.

Alternatively, we can select 200 American males and measure their heights. This is sample data.

If we calculate the mean of the population data, its symbol is the Greek letter μ and pronounced “mu.”

## How to find the population mean?

*We have two cases:*

- We have population data and so calculate the population mean from it.
- We have sample data and use the sample mean to construct an interval that most likely contains the population mean.

### – Examples of population data

#### – Example 1

The following is the murder rate (per 100,000 population) for the 50 states of the U.S. in 1976. What is the mean of the murder rate?

We have information about all states of the U.S. so this is population data.

#### Note

This dataset may be considered as a sample or as a population.

It is a sample if we want to study the murder rate of the U.S. states in the 1970s, or it is a population if data is from 1970-1980 because this is a 1-year sample from these 10 years.

It is a population for the murder rate of U.S. states in 1976.

state | murder rate |

Alabama | 15.1 |

Alaska | 11.3 |

Arizona | 7.8 |

Arkansas | 10.1 |

California | 10.3 |

Colorado | 6.8 |

Connecticut | 3.1 |

Delaware | 6.2 |

Florida | 10.7 |

Georgia | 13.9 |

Hawaii | 6.2 |

Idaho | 5.3 |

Illinois | 10.3 |

Indiana | 7.1 |

Iowa | 2.3 |

Kansas | 4.5 |

Kentucky | 10.6 |

Louisiana | 13.2 |

Maine | 2.7 |

Maryland | 8.5 |

Massachusetts | 3.3 |

Michigan | 11.1 |

Minnesota | 2.3 |

Mississippi | 12.5 |

Missouri | 9.3 |

Montana | 5.0 |

Nebraska | 2.9 |

Nevada | 11.5 |

New Hampshire | 3.3 |

New Jersey | 5.2 |

New Mexico | 9.7 |

New York | 10.9 |

North Carolina | 11.1 |

North Dakota | 1.4 |

Ohio | 7.4 |

Oklahoma | 6.4 |

Oregon | 4.2 |

Pennsylvania | 6.1 |

Rhode Island | 2.4 |

South Carolina | 11.6 |

South Dakota | 1.7 |

Tennessee | 11.0 |

Texas | 12.2 |

Utah | 4.5 |

Vermont | 5.5 |

Virginia | 9.5 |

Washington | 4.3 |

West Virginia | 6.7 |

Wisconsin | 3.0 |

Wyoming | 6.9 |

1. Add up all of the numbers:

15.1+ 11.3+ 7.8+ 10.1+ 10.3+ 6.8+ 3.1+ 6.2+ 10.7+ 13.9+ 6.2+ 5.3+ 10.3+ 7.1+ 2.3+ 4.5+ 10.6+ 13.2+ 2.7+ 8.5+ 3.3+ 11.1+ 2.3+ 12.5+ 9.3+ 5.0+ 2.9+ 11.5+ 3.3+ 5.2+ 9.7+ 10.9+ 11.1+ 1.4+ 7.4+ 6.4+ 4.2+ 6.1+ 2.4+ 11.6+ 1.7+ 11.0+ 12.2+ 4.5+ 5.5+ 9.5+ 4.3+ 6.7+ 3.0+ 6.9 = 368.9.

2. Count the numbers of items in your population. In this population, there are 50 items or 50 states.

3. Divide the number you found in Step 1 by the number you found in Step 2.

The population mean = 368.9/50 = 7.378.

**Note that the population mean** has the same unit as the original data. So 7.378 is the mean murder rate per 100,000 population.

#### – Example 2

The following are the weights (in grams) for 71 chickens on a certain farm. What is the mean?

We have the weights of all chickens on the farm, so this is population data.

chicken number | weight |

1 | 179 |

2 | 160 |

3 | 136 |

4 | 227 |

5 | 217 |

6 | 168 |

7 | 108 |

8 | 124 |

9 | 143 |

10 | 140 |

11 | 309 |

12 | 229 |

13 | 181 |

14 | 141 |

15 | 260 |

16 | 203 |

17 | 148 |

18 | 169 |

19 | 213 |

20 | 257 |

21 | 244 |

22 | 271 |

23 | 243 |

24 | 230 |

25 | 248 |

26 | 327 |

27 | 329 |

28 | 250 |

29 | 193 |

30 | 271 |

31 | 316 |

32 | 267 |

33 | 199 |

34 | 171 |

35 | 158 |

36 | 248 |

37 | 423 |

38 | 340 |

39 | 392 |

40 | 339 |

41 | 341 |

42 | 226 |

43 | 320 |

44 | 295 |

45 | 334 |

46 | 322 |

47 | 297 |

48 | 318 |

49 | 325 |

50 | 257 |

51 | 303 |

52 | 315 |

53 | 380 |

54 | 153 |

55 | 263 |

56 | 242 |

57 | 206 |

58 | 344 |

59 | 258 |

60 | 368 |

61 | 390 |

62 | 379 |

63 | 260 |

64 | 404 |

65 | 318 |

66 | 352 |

67 | 359 |

68 | 216 |

69 | 222 |

70 | 283 |

71 | 332 |

1. Add up all of the numbers:

179+ 160+ 136+ 227+ 217+ 168+ 108+ 124+ 143+ 140+ 309+ 229+ 181+ 141+ 260+ 203+ 148+ 169+ 213+ 257+ 244+ 271+ 243+ 230+ 248+ 327+ 329+ 250+ 193+ 271+ 316+ 267+ 199+ 171+ 158+ 248+ 423+ 340+ 392+ 339+ 341+ 226+ 320+ 295+ 334+ 322+ 297+ 318+ 325+ 257+ 303+ 315+ 380+ 153+ 263+ 242+ 206+ 344+ 258+ 368+ 390+ 379+ 260+ 404+ 318+ 352+ 359+ 216+ 222+ 283+ 332 = 18553.

2. Count the numbers of items in your population. In this population, there are 71 items or chickens.

3. Divide the number you found in Step 1 by the number you found in Step 2.

The population mean = 18553/71 = 261.3 grams.

#### – Example 3

The following is the trunk circumference (in mm) for 35 orange trees on a certain farm. What is the mean?

We have the trunk circumferences of all trees on the farm, so this is population data.

tree number | circumference |

1 | 30 |

2 | 58 |

3 | 87 |

4 | 115 |

5 | 120 |

6 | 142 |

7 | 145 |

8 | 33 |

9 | 69 |

10 | 111 |

11 | 156 |

12 | 172 |

13 | 203 |

14 | 203 |

15 | 30 |

16 | 51 |

17 | 75 |

18 | 108 |

19 | 115 |

20 | 139 |

21 | 140 |

22 | 32 |

23 | 62 |

24 | 112 |

25 | 167 |

26 | 179 |

27 | 209 |

28 | 214 |

29 | 30 |

30 | 49 |

31 | 81 |

32 | 125 |

33 | 142 |

34 | 174 |

35 | 177 |

1. Add up all of the numbers:

30+ 58+ 87+ 115+ 120+ 142+ 145+ 33+ 69+ 111+ 156+ 172+ 203+ 203+ 30+ 51+ 75+ 108+ 115+ 139+ 140+ 32+ 62+ 112+ 167+ 179+ 209+ 214+ 30+ 49+ 81+ 125+ 142+ 174+ 177 = 4055.

2. Count the numbers of items in your population. In this population, there are 35 items or trees.

3. Divide the number you found in Step 1 by the number you found in Step 2.

The population mean = 4055/35 = 115.8571 mm.

### – Examples of sample data

For samples with a size greater than 30, the interval that, most likely, contains the population mean is calculated by:

¯x±1.96Xs/√n

Where:

¯x is the calculated sample mean.

s is the standard deviation of the sample. It is a measure of the data spread.

n is the sample size.

This interval (called 95% confidence interval) gives us a range of possible values for the unknown population mean from which the sample was taken.

#### – Example 4

The following is the age (in years) of 50 randomly selected individuals from a certain population. If you know that this sample’s standard deviation is 18.65, construct a 95% confidence interval for the true population mean.

89 61 74 85 46 60 41 18 37 30 44 37 51 53 74 38 56 48 52 62 33 56 38 30 43 32 74 27 49 53 40 27 42 60 88 22 59 43 69 75 28 47 35 62 65 31 22 31 26 83.

1. Add up all of the numbers in your sample:

89+ 61+ 74+ 85+ 46+ 60+ 41+ 18+ 37+ 30+ 44+ 37+ 51+ 53+ 74+ 38+ 56+ 48+ 52+ 62+ 33+ 56+ 38+ 30+ 43+ 32+ 74+ 27+ 49+ 53+ 40+ 27+ 42+ 60+ 88+ 22+ 59+ 43+ 69+ 75+ 28+ 47+ 35+ 62+ 65+ 31+ 22+ 31+ 26+ 83 = 2446.

2. Count the numbers of items in your sample. In this sample, there are 50 items or persons.

3. Divide the number you found in Step 1 by the number you found in Step 2.

The sample mean = 2446/50 = 48.92 years.

4. The 95% confidence interval is:

¯x±1.96Xs/√n

¯x-1.96Xs/√n to ¯x+1.96Xs/√n

48.92-1.96X18.65/√50 to 48.92+1.96X18.65/√50 or 43.75 to 54.1.

It means that the true population mean age can be as small as 43.75 years and as large as 54.1 years.

Owing to the presence of the √n term in the formula for an interval calculation, the sample size affects the interval width. Larger sample sizes lead to smaller interval widths (or a more precise estimate of the population mean).

Suppose that you have a 100 sample size and you obtain the same sample mean and standard deviation; the 95% confidence interval will be:

48.92-1.96X18.65/√100 to 48.92+1.96X18.65/√100 or 45.26 to 52.6.

Suppose that you have a 500 sample size and you obtain the same sample mean and standard deviation; the 95% confidence interval will be:

48.92-1.96X18.65/√500 to 48.92+1.96X18.65/√500 or 47.29 to 50.55.

With increasing the sample size, you have more values about the true population mean.

We can see that in the following figure.

<